5.2 The Definite Integral

From the last section we know ...

 $\lim_{n\to\infty}\sum_{i=1}^{n} f(x_i)\Delta x = \lim_{n\to\infty} [f(x_1)\Delta x + f(x_2)\Delta x + f(x_3)\Delta x + \dots + f(x_n)\Delta x]$ is found when computing an area.

This same type of limit occurs in a wide variety of situation even when *f* is not at positive function.

Definition of a Definite Integral: If f is a function defined for $a \le x \le b$, we divide the interval [a, b] into **n** subintervals of equal width $\Delta x = \frac{b-a}{n}$. We let $x_0 = a, x_1, x_2, x_3, \dots, x_n = b$ be the endpoints of these subintervals and we let $x_1^*, x_2^*, x_3^*, \dots, x_n^*$ be any sample points (right, left, midpoints, etc...) in these subintervals, so x_i^* lies in the i^{th} subinterval $[x_{i-1}, x_i]$. Then definite integral of f from **a** to **b** is

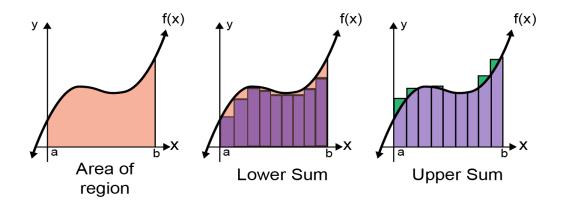
$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*})\Delta x$$

 \cdots provided that this limit exists and gives the same value for all possible choices of sample points. If it **does** exist, we say that **f** is integrable on [a, b].

 \int is the integral sign. In $\int_a^b f(x) dx$, f(x) is the **integrand**, **a** and **b** are the limits of integration where **a** is the lower limit and **b** is the upper limit, **dx** indicates that the independent variable is **x** and the function is being integrated with respect to **x**.

 $\sum_{i=1}^{n} f(x_i^*) \Delta x$ is the Riemann Sum. If **f** is positive, then the Riemann Sum is the sum of area of approximating rectangles.

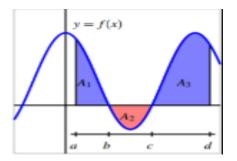
Since $\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$, we can see that $\int_{a}^{b} f(x) dx$ can be interpreted as the area under the curve y = f(x) from **a** to **b**.

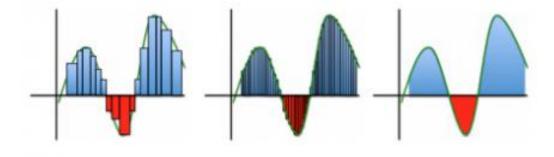


Calcworkshop.com

If *f* is both positive and negative, then the Riemann Sum is the sum of the areas of the rectangles that lie above the **x-axis** minus the areas of the rectangles that lie below the **x-axis**. For the diagrams below, the area would be interpreted as:

$$\int_{a}^{b} f(x) dx = A_{1} + A_{3} - A_{2}$$





We have defined the integral for an integrable function, but not all functions are integrable.

Theorem: If *f* is integrable on **[a, b]**, then

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i})\Delta x$$

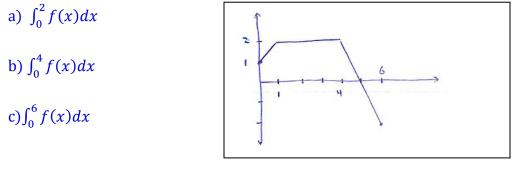
where $\Delta x = \frac{b-a}{n}$ and $x_i = a + i\Delta x$

Example: Evaluate $\int_{0}^{3} (x^{3} - 6x) dx$ using the second theorem above. We have $\int_{0}^{3} (x^{3} - 6x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x$, where $\Delta x = \frac{b-a}{n} = \frac{3-0}{n} = \frac{3}{n}$ and $x_{i} = 0 + i\frac{3}{n} = \frac{3i}{n}$ $\int_{0}^{3} (x^{3} - 6x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f\left(\frac{3i}{n}\right) \frac{3}{n} = \lim_{n \to \infty} \sum_{i=1}^{n} \left(\left(\frac{3i}{n}\right)^{2} - 6\left(\frac{3i}{n}\right)\right) \frac{3}{n} = \lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{27i^{3}}{n^{3}} - \frac{18i}{n}\right) \frac{3}{n}$ $\lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left(\frac{27i^{3}}{n^{3}} - \frac{18i}{n}\right) = \lim_{n \to \infty} \frac{3}{n} \left[\frac{27}{n^{3}} \sum_{i=1}^{n} i^{3} - \frac{18}{n} \sum_{i=1}^{n} i\right] = \lim_{n \to \infty} \left[\frac{81}{n^{4}} \sum_{i=1}^{n} i^{3} - \frac{54}{n^{2}} \sum_{i=1}^{n} i\right] = \lim_{n \to \infty} \left[\frac{81}{n^{4}} \left(\frac{n(n+1)}{2}\right)^{2} - \frac{54}{n^{2}} \left(\frac{n(n+1)}{2}\right)\right] = \lim_{n \to \infty} \left[\frac{81}{n^{4}} \left(\frac{n^{2} + 2n + 1}{4}\right) - \frac{54}{n^{2}} \left(\frac{n(n+1)}{2}\right)\right] = \lim_{n \to \infty} \left[\frac{81}{4} \left(\frac{n^{2} + 2n + 1}{n^{2}}\right) - \frac{54}{2} \left(\frac{n(n+1)}{n^{2}}\right)\right] = \lim_{n \to \infty} \left[\frac{81}{4} \left(\frac{n^{2} + 2n + 1}{n^{2}}\right) - \frac{54}{2} \left(\frac{n+1}{n}\right)\right]$

$$\lim_{n \to \infty} \left[\frac{81}{4} \left(1 + \frac{2}{n} + \frac{1}{n^2} \right) - \frac{54}{2} \left(1 + \frac{1}{n} \right) \right] = \frac{81}{4} - 27 = \frac{-27}{4} = -6.25$$

This integral can't be interpreted as an area since f takes on both positive and negative values and areas can't be negative.

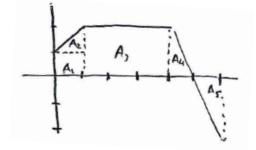
Example: Evaluate the following integrals by interpreting each in terms of geometric areas. In other words, you will use geometric area formulas. f(x) is graphed below.



a)
$$\int_0^2 f(x)dx = A_1 + A_2 + A_3 = (1)(1) + \frac{1}{2}(1)(1) + (2)(1) = 1 + .5 + 2 = 3.5$$

b)
$$\int_0^4 f(x)dx = A_1 + A_2 + A_3 = (1)(1) + \frac{1}{2}(1)(1) + (3)(2) = 1 + .5 + 6 = 7.5$$

c) $\int_0^6 f(x)dx = A_1 + A_2 + A_3 + A_4 - A_5 = (1)(1) + \frac{1}{2}(1)(1) + (3)(2) + \frac{1}{2}(1)(2) - \frac{1}{2}(1)(2)$ = 1 + .5 + 6 + 1 - 1 = **7.5**



Properties of the Definite Integral – assume that **a** < **b**.

$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

If $\mathbf{a} = \mathbf{b}$, then $\Delta x = 0$ and

$$\int_{a}^{a} f(x) dx = \mathbf{0}$$

Properties of the Integral

1.
$$\int_{a}^{b} c \cdot dx = c(b-a), \text{ where } c \text{ is any constant}$$

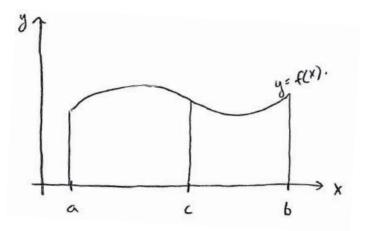
2.
$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

3.
$$\int_{a}^{b} c \cdot f(x) dx = c \cdot \int_{a}^{b} f(x) dx, \text{ where } c \text{ is any constant}$$

4.
$$\int_{a}^{b} [f(x) - g(x)] dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$$

5.
$$\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx$$

For Property #5, below is a graphical representation.



Comparison Properties of the Integral.

6. If $f(x) \ge 0$ for $a \le x \le b$, then ...

$$\int_{a}^{b} f(x) dx \ge 0$$

7. If $f(x) \ge g(x)$ for $a \le x \le b$, then ...

$$\int_{a}^{b} f(x)dx \geq \int_{a}^{b} g(x)dx$$

8. If $m \leq f(x) \leq M$ for $a \leq x \leq b$, then ...

$$m(b-a) \leq \int_{a}^{b} f(x) dx \leq M(b-a)$$

 $\tan(x) dx$

All of these properties can be proved.

Example: Use property **8** to estimate the value of the integral.

Graph the tangent function from $\frac{\pi}{4}$ to $\frac{\pi}{3}$. Thus: $1\left(\frac{\pi}{2}-\frac{\pi}{4}\right) \leq \int_{1}^{\frac{\pi}{3}} \tan x \, dx \leq \sqrt{3}\left(\frac{\pi}{2}-\frac{\pi}{4}\right)$

$$\mathbb{L}\left(\frac{\pi}{3} - \frac{\pi}{4}\right) \leq \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \tan x \, dx \leq \sqrt{3}\left(\frac{\pi}{3} - \frac{\pi}{4}\right)$$
$$\frac{\pi}{12} \leq \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \tan x \, dx \leq \frac{\sqrt{3}\pi}{12}$$